Controlling a program

// child

close (STDIN_ FILENO)

dup2 (indes[0], STDIN_FILENO)
close (indes[0])

clsse(indes[1]) // outdes

execlp("./circle", "./circle", (char *)NULL)

// mother

fentl (indes[1], F_SETFL, fcntl(indes[1l], F_GETFL) | O NONBLOCK) // outdes
do{

nread = read(outdes[0], buffer, MAX BUFFER);
while (nread <= 0);
write (STDOUT FILENO, buffer, nread);

Initialize Device

if (luse mem) {
if (! request region(short base, NR, "short"))

ERROR
lelse(
if (! request mem region(...))
ERROR
short base = (unsigned long) ioremap (short base, NR)
}
result = register chrdev(major, "short", &short fops);

if (result < 0)
ERROR - release_?_region
if (scull major)
dev = MKDEV (scull ajor, scull minor)
result = register chrdev region(dev, NR, "scull")
else
result = alloc_chrdev region(&dev, scull minor, NR, "scull")
scull major = MAJOR (dev)

scull devices = kmalloc (NR*sizeof (struct scull dev), GFP_KERNEL)
memset (scull devices, 0, size)
for (i -> NR)

initialize

Self Probe Example

** mask = probe irg on(

short_irqg = 0

outb _p(0x10, short base+2)

outb _p(0x00, short base)
outb p (0xFF, short base)

outb p(0x00, short base+2)

udelay (5)

** short irg = probe irq off (mask)

Pipe ig¢inde yapilanlar - bekletmeler

while (1) {
inpipe = pipe2[0] // outpipe
FD ZERO (&fds_rd)
FD_SET (inpipe, &fds rd) // outpipe

select (n+l, &fds rd, &fds wr, NULL, NULL)

if (FD_ISSET (inpipe, &fds rd))
i = read(inpipe, buf, 1024)

IRQ ne zaman register edilmeli -- First Opening > Registering Device

The interrupt handler can be installed either at driver initialization or when the

device is first opened. Although installing the interrupt handler from within the module’s
initialization function might sound like a good idea, it often isn’t, especially if

your device does not share interrupts. Because the number of interrupt lines is limited,
you don’t want to waste them. You can easily end up with more devices in your

computer than there are interrupts. If a module requests an IRQ at initialization, it
prevents any other driver from using the interrupt, even if the device holding it is

never used. Requesting the interrupt at device open, on the other hand, allows some
sharing of resources.

IRQ autodetect - initialize, probe handling, open, close

One of the most challenging problems for a driver at initialization time can be how
to determine which IRQ line is going to be used by the device. Autodetect
if (short irg < 0) /* not yet specified: force the default on */
switch (short base) {
case 0x378: short irqg = 7; break;
case 0x278: short_irqg = 2; break;
case 0x3bc: short_irg = 5; break;
}
// interrupt handler
irgreturn_t short interrupt(int irqg, void *dev_id, struct pt regs *regs) {
struct timeval tv
int written
do gettimeofday (&tv)
written = sprintf((char*)short head, "%08u.%06u\n", (int) (tv.tv_sec % 100000000),
(int) (tv.tv_usec))
short incr bp(&short head, written)
wake up_interruptable (&short_queue)
return IRQ HANDLED
}

int short open(struct inode *inode, struct file *filp)
extern struct file operations short i fops
if (iminor (inode) & 0x809
filp->f op = &short i fops
return 0

irqgreturn t short probing(int irqg, void *dev id, struct pt regs *regs) {
if (short irg == 0)
short _irq = irqg;
if (short irg != irq)
short irqg = -irq;
return IRQ HANDLED
}

Autodeteched irqg Interruptor yaz

if (short irg >= 0)
result = request irg(short irqg, short interrupt,
SA_INTERRUPT, "short", NULL)
outb (0x10, short base + 2)

One of the main problems with interrupt handling is how to perform lengthy tasks

within a handler. Often a substantial amount of workmust be done in response to a

device interrupt, but interrupt handlers need to finish up quickly and not keep interrupts
blocked for long.

Linux (along with many other systems) resolves this problem by splitting the interrupt
handler into two halves. The so-called top half is the routine that actually

responds to the interrupt—the one you register with request irg. The bottom half is a
routine that is scheduled by the top half to be executed later, at a safer time.

I/0 System layerlerini agikla

user processes

device-independent software

device drivers

interrupt handlers

hardware

I/0 Request lifecycleyi agikla

request I/O (user process) -> system call

can already satisfy request? -> no

send request to device driver -> process request
device controller -> interrupt -> I/O completed
interrupt handler -> receives interrupt

store data in buffer

determine which I/0 completed -> transfer data
I/0 completed

Advantages = Device Drivers as Modules

provides a standart interface

hides details of the hardware devices communicaiton protocols

