VECTOR DERIVATIVES

CARTESIAN: $d\mathbf{l} = dx \, \hat{\mathbf{x}} + dy \, \hat{\mathbf{y}} + dz \, \hat{\mathbf{z}};$ $d\mathbf{r} = dx \, dy \, dz$

Gradient $\nabla T = \frac{\partial T}{\partial x}\hat{\mathbf{x}} + \frac{\partial T}{\partial y}\hat{\mathbf{y}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}}$

Divergence $\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$

Curl
$$\nabla \times \mathbf{v} = \hat{\mathbf{x}} \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_z}{\partial y} \right)$$

Laplacian $\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$

SPHERICAL: $d\mathbf{l} = dr \,\hat{\mathbf{r}} + r d\theta \,\hat{\mathbf{\theta}} + r \sin\theta \,d\phi \,\hat{\mathbf{\phi}}; \qquad d\mathbf{r} = dl_r dl_\theta dl_\phi = r^2 \sin\theta \,dr d\theta d\phi$

Gradient $\nabla T = \frac{\partial T}{\partial r}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial T}{\partial \theta}\hat{\mathbf{\theta}} + \frac{1}{r\sin\theta}\frac{\partial T}{\partial \phi}\hat{\mathbf{\phi}}$

Divergence
$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$

Curl

$$\nabla \times \mathbf{v} = \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta} (\sin\theta v_{\phi}) - \frac{\partial v_{\theta}}{\partial\phi} \right] \hat{\mathbf{r}} + \frac{1}{r} \left[\frac{1}{\sin\theta} \frac{\partial v_r}{\partial\phi} - \frac{\partial}{\partial r} (rv_{\phi}) \right] \hat{\mathbf{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rv_{\theta}) - \frac{\partial v_r}{\partial\theta} \right] \hat{\mathbf{\phi}}$$

Laplacian $\nabla^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2}$

CYLINDRICAL: $d\mathbf{l} = dr\,\hat{\mathbf{r}} + rd\phi\,\hat{\mathbf{\phi}} + dz\,\hat{\mathbf{z}};$ $d\mathbf{r} = rdr\,d\phi\,dz$

- Gradient $\nabla T = \frac{\partial T}{\partial r}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial T}{\partial \phi}\hat{\mathbf{\phi}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}}$
- Divergence $\nabla \cdot \mathbf{v} = \frac{1}{r} \frac{\partial}{\partial r} (rv_r) + \frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$

Curl
$$\nabla \times \mathbf{v} = \left(\frac{1}{r}\frac{\partial v_z}{\partial \phi} - \frac{\partial v_{\phi}}{\partial z}\right)\hat{\mathbf{r}} + \left(\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}\right)\hat{\mathbf{\phi}} + \frac{1}{r}\left(\frac{\partial}{\partial r}(rv_{\phi}) - \frac{\partial v_r}{\partial \phi}\right)\hat{\mathbf{z}}$$

Laplacian
$$\nabla^2 T = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2}$$

TRIPLE PRODUCTS

(1)
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

(2)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

PRODUCT RULES

(3)
$$\nabla(fg) = f\nabla g + g\nabla f$$

(4)
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

(5)
$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$

(6)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

(7)
$$\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$

(8)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$

SECOND DERIVATIVES

(9)
$$\nabla \cdot (\nabla \times \mathbf{v}) = 0$$

(10)
$$\nabla \times (\nabla T) = 0$$

(11)
$$\nabla \times (\nabla \times \mathbf{v}) = \nabla (\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v}$$

FUNDAMENTAL THEOREMS

Gradient Theorem	$\int_{a}^{b} (\nabla T) \cdot d\mathbf{l} = T(\mathbf{b}) - T(\mathbf{b})$	(a)
Divergence Theorem	$\int_{volume} (\nabla \cdot \mathbf{v}) d\mathbf{r} = \oint_{surface} \mathbf{v} \cdot d\mathbf{r}$	I
Curl Theorem	$\int_{surface} (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \oint_{boundary} \nabla \mathbf{v}$	v · dl ^{line}
Coulomb's Law	$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \hat{\mathbf{r}}$	
Electric Field	$\mathbf{F} = Q\mathbf{E}$	$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(r)}{r^2} \hat{\mathbf{r}} d\mathbf{r}$
Gauss' Law	$\int \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{enclosed}}{\varepsilon_0}$	$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$

Electric Potential	$V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E}$	$\cdot d\mathbf{l}$ $\mathbf{E}(\mathbf{r}) = -\nabla V(\mathbf{r})$		
Poisson' Eqn	$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$	$V = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(r)}{r} d\mathbf{r}$		
Laplace's Eqn	$\nabla^2 V = 0$	$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos\theta)$		
Boundary Conditions	$V_{above} = V_{below}$	$\frac{\partial V_{above}}{\partial n} - \frac{\partial V_{below}}{\partial n} = -\frac{\sigma}{\varepsilon_0}$		
Legendre polynomials	$P_0(x) = 1 \qquad P_1(x)$	$= x \qquad P_2(x) = (3x^2 - 1)/2$		
$P_3(x)$	$=(5x^{3}-3x)/2$	$P_4(x) = (35x^4 - 30x^2 + 3)/8$		
Stored energy $W =$	$\frac{1}{2}\sum_{i=1}^{n}q_{i}V(\mathbf{r}_{i})$	$W = \frac{1}{2} \int \rho(\mathbf{r}) V(\mathbf{r}) d\mathbf{r} = \frac{\varepsilon_0}{2} \int E^2 d\mathbf{r}$		
Bound charge densities	$\rho_b = -\nabla \cdot \mathbf{P}$	$\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}}$		
Electric Displacement	$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E} + \mathbf{P}$	$\oint \mathbf{D} \cdot d\mathbf{a} = Q_{f \text{ enclosed}}$		
Linear Dielectrics	$\mathbf{P} = \chi_e \varepsilon_0 \mathbf{E}$	$\mathbf{D} = \varepsilon_0 (1 + \chi_e) \mathbf{E} = \varepsilon \mathbf{E}$		
	$\varepsilon = \varepsilon_r \varepsilon_0 = (1 + \chi_e) \varepsilon_0$			
Boundary Conditions	$\mathbf{D}_{above}^{\parallel} - \mathbf{D}_{below}^{\parallel} = \mathbf{P}_{above}^{\parallel}$	$D_{above}^{\perp} - \mathbf{P}_{below}^{\parallel} \qquad D_{above}^{\perp} - D_{below}^{\perp} = \sigma_f$		
Capacitance	$C = \frac{Q}{V}$			
Biot-Savart	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l}' \times \hat{\mathbf{s}}}{s^2}$			
Ampere's Law	$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{enc}$	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$		
Vector Potential	$\mathbf{B} = \nabla \times \mathbf{A}$	$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l}'}{s}$		
Magnetic Forces	$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$	$d\mathbf{F} = Id\mathbf{I} \times \mathbf{B}$		
Bound current densities	$\mathbf{J}_b = \nabla \times \mathbf{M}$	$\mathbf{K}_{b} = \mathbf{M} \times \hat{\mathbf{n}}$		
Boundary Conditions	$\mathbf{B}_{above} - \mathbf{B}_{below} = \mu_0 (\mathbf{K})$	$\mathbf{x} \times \hat{\mathbf{n}}$		
$\mathbf{A}_{above} = \mathbf{A}_{below} \qquad \qquad \frac{\partial}{\partial n} \mathbf{A}_{above} - \frac{\partial}{\partial n} \mathbf{A}_{below} = -\mu_0 \mathbf{K}$				

Linear Media	$\mathbf{M} = \boldsymbol{\chi}_m \mathbf{H}$	$\mathbf{B} = \mu_0 (1 + \chi_m) \mathbf{H} = \mu \mathbf{H}$
	$\mu = \mu_r \mu_0 = (1 + \chi_m) \mu_0$	
Stored Energy	$W = \frac{1}{2\mu} \int B^2 d\mathbf{r}$	
Faraday's Law	$\int \mathbf{E} \cdot d\mathbf{l} = -\frac{d\phi}{dt}$	$\phi = \int_{S} \mathbf{B} \cdot d\mathbf{a}$
Inductance	$M_{21} = \frac{\mu_0}{4\pi} \iint \frac{d\mathbf{l}_1 \cdot d\mathbf{l}_2}{s}$	$\varepsilon = -L\frac{dI}{dt}$
Maxwell's Equations	$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times$	$\nabla \cdot \mathbf{B} = 0$ $\mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$
Polarization Current	$\mathbf{J}_{p} = \frac{\partial \mathbf{P}}{\partial t}$	

Maxwell's Equations in Matter

$$\nabla \cdot \mathbf{D} = \rho_f$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$$

for linear media

$\mathbf{P} = \varepsilon_0 \boldsymbol{\chi}_e \mathbf{E}$		$\mathbf{D} = \varepsilon \mathbf{E}$
$\mathbf{M} = \boldsymbol{\chi}_m \mathbf{H} \bigg\}$	so that	$\mathbf{H} = \frac{1}{\mu} \mathbf{B} \bigg\}$