
VECTOR DERIVATIVES
CARTESIAN: dl = dx ˆ x + dy ˆ y + dz ˆ z ; dr = dx dy dz

Gradient ∇T =
∂T
∂x
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∂y
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Laplacian ∇2T =
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∂x 2 +
∂2T
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SPHERICAL: dl = dr ˆ r + rdθ ˆ θ + rsinθ dφ ˆ φ ; dr = dlrdlθ dlφ = r2 sinθ drdθdφ

Gradient ∇T =
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CYLINDRICAL: dl = dr ˆ r + rdφ ˆ φ + dz ˆ z ; dr = rdr dφ dz

Gradient ∇T =
∂T
∂r

ˆ r +
1

r

∂T
∂φ

ˆ φ +
∂T
∂z

ˆ z 

Divergence ∇ ⋅ v =
1

r

∂
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VECTOR IDENTITIES

TRIPLE PRODUCTS

(1) A ⋅ (B × C) = B ⋅ (C × A) = C ⋅ (A × B)

(2) A × (B × C) = B(A ⋅ C) − C(A ⋅ B)

PRODUCT RULES

(3) ∇( fg) = f∇g+ g∇f

(4) ∇(A ⋅ B) = A × (∇ × B) + B × (∇ × A) + (A ⋅ ∇)B + (B ⋅ ∇)A

(5) ∇ ⋅ ( fA) = f (∇ ⋅ A) + A ⋅ (∇f )

(6) ∇ ⋅ (A × B) = B ⋅ (∇ × A) − A ⋅ (∇ × B)

(7) ∇ × ( fA) = f (∇ × A) − A × (∇f )

(8) ∇ × (A × B) = (B ⋅ ∇)A − (A ⋅ ∇)B + A(∇ ⋅ B) − B(∇ ⋅ A)

SECOND DERIVATIVES

(9) ∇ ⋅ (∇ × v) = 0

(10) ∇ × (∇T) = 0

(11) ∇ × (∇ × v) = ∇(∇ ⋅ v) − ∇2v

FUNDAMENTAL THEOREMS

Gradient Theorem (∇T) ⋅ dl
a

b

∫ = T(b) −T(a)

Divergence Theorem (∇ ⋅ v)dr
volume

∫ = v ⋅ da
surface

∫

Curl Theorem (∇ × v) ⋅ da
surface

∫ = v ⋅ dl
boundary line

∫

Coulomb’s Law F =
1

4πε0

qQ

r2
ˆ r 

Electric Field F =QE E =
1

4πε0

ρ(r)

r2
ˆ r dr∫

Gauss’ Law E ⋅ da∫ =
Qenclosed

ε0

∇ ⋅ E =
ρ
ε0



Electric Potential V (b) −V (a) = − E ⋅ dl
a

b

∫ E(r) = −∇V (r)

Poisson’ Eqn ∇2V = −
ρ
ε0

V =
1

4πε0

ρ(r)

r
dr∫

Laplace’s Eqn ∇2V = 0 V (r,θ) = Alr
l +

Bl

rl+1
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⎝ 
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⎠ 
⎟ Pl (cosθ)

l= 0

∞

∑

Boundary Conditions Vabove =Vbelow

∂Vabove

∂n
−

∂Vbelow

∂n
= −

σ
ε0

Legendre polynomials P0(x) =1 P1(x) = x P2(x) = (3x 2 −1) 2

P3(x) = (5x 3 − 3x) 2 P4 (x) = (35x 4 − 30x 2 + 3) 8

Stored energy W =
1

2
qiV (ri)

i=1

n

∑ W =
1

2
ρ(r)V (r)dr∫ =

ε0

2
E 2dr∫

Bound charge densities ρb = −∇ ⋅ P σ b = P ⋅ ˆ n 

Electric Displacement D = ε0E + P D ⋅ da∫ =Qf enclosed

Linear Dielectrics P = χeε0E D = ε0 1+ χe( )E = εE

ε = εrε0 = 1+ χe( )ε0

Boundary Conditions Dabove
|| − Dbelow

|| = Pabove
|| − Pbelow

|| Dabove
⊥ −Dbelow

⊥ = σ f

Capacitance C =
Q

V

Biot-Savart B(r) =
µ0I

4π
d ′ l × ˆ s 
s2∫

Ampere’s Law B ⋅ dl∫ = µ0Ienc ∇ × B = µ0J

Vector Potential B = ∇ × A A(r) =
µ0I

4π
d ′ l 
s

∫

Magnetic Forces F = qv × B dF = Idl × B

Bound current densities Jb = ∇ × M K b = M × ˆ n 

Boundary Conditions Babove − Bbelow = µ0 K × ˆ n ( )

A above = A below

∂
∂n

A above −
∂

∂n
A below = −µ0K



Linear Media M = χmH B = µ0 1+ χm( )H = µH

µ = µrµ0 = 1+ χm( )µ0

Stored Energy W =
1

2µ
B2dr∫

Faraday’s Law E ⋅ dl∫ = −
dφ
dt

φ = B ⋅ da
S

∫

Inductance M21 =
µ0

4π
dl1 ⋅ dl2

s
∫∫ ε = −L

dI

dt

Maxwell’s Equations
∇ ⋅ E =

ρ
ε0

∇ ⋅ B = 0

∇ × E = −
∂B
∂t

∇ × B = µ0 J + ε0

∂E
∂t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Polarization Current Jp =
∂P
∂t

Maxwell’s Equations in Matter

∇ ⋅ D = ρ f

∇ ⋅ B = 0

∇ × E = −
∂B
∂t

∇ × H = J f +
∂D
∂t

for linear media
P = ε0χeE

M = χmH

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
so that

D = εE

H = 1
µ B

⎫ 
⎬ 
⎪ 

⎭ ⎪ 


