

ISTANBUL TECHNICAL UNIVERSITY
Faculty of Science and Letters – Mathematical Engineering

NUMERICAL SOLUTIONS OF (2+1)
NONLINEAR SCHRÖDINGER EQUATION

GRADUATION PROJECT

Beycan KAHRAMAN
040020337

Department: Mathematical Engineering

Advisor: Ass. Prof. Nalan ANTAR

May 2008

ISTANBUL TECHNICAL UNIVERSITY
Faculty of Science and Letters – Mathematical Engineering

NUMERICAL SOLUTIONS OF (2+1)
NONLINEAR SCHRÖDINGER EQUATION

GRADUATION PROJECT

Beycan KAHRAMAN
040020337

 Department: Mathematical Engineering
Advisor: Ass. Prof. Nalan ANTAR

May 2008

NUMERICAL SOLUTIONS OF (2+1) NONLINEAR SCHRÖDINGER EQUATION

(SUMMARY)

The aim of this project is to analyze Schrödinger's equation in three dimensional space. We

are working on Yang’s paper as a reference for our studies. In addition, we have studied

renormalization methods and exponential time differencing for stiff systems. We have also

studied programming spectral methods in matlab. During this analysis, we are dealing with

spectral analysis, Fourier space and fast Fourier transform.

In the study, we could find a mode with renormalization method and using this mode as a

initial condition for Schrödinger's equation we have observed its long term stability under

some perturbation.

We have compared our results with a finite difference matlab program in order to sure

about the results. As it predicted, we have seen that spectral methods are faster than other

methods.

As a last test, we have observed both added-potential case and without potential case

equations to analyze the effect of field intensity of the optical lattice. The results show that,

without potential case, the system is more stable than the potential added case.

We do not study on penrose and vortex initial conditions, which have more than one

solitons. We predict that these will give worse stability regions than one soliton give, from

similar studies. They will be gratifying research areas for our next studies. In addition, we

would study on eigenvalues, eigenmodes and eigenvectors of Schrödinger's equation in

order to examine stability boundaries and finding the best initial constant values.

 (2+1) NON-LİNEER SCHRÖDINGER DENKLEMİNİN SAYISAL ÇÖZÜMÜ

(ÖZET)

Bu projenin amacı (2+1) non-lineer Schrödinger denkleminin spectral yöntemlerle sayısal

olarak çözülmesidir. Bu konuda Yang'ın makalesini referans olarak kullandık. Ayrıca

renormalizasyon yöntemi [2-4] ve stiff sistemler için üstel zaman farklandırma yöntemi [5-

7] üzerine çalıştık. Matlab'da bu konuda istediğimiz programları yapabilmek için

Trefethen'in kaynakları [8-9] ile spectral yöntemlerin matlab'ta nasıl kodlanabileceğini

öğrendik. Yapılan analiz sürecinde, spectral analizin yanı sıra, Fourier uzayı ve hızlı

Fourier dönüşümü üzerine yoğun çalışmalarımız oldu.

In the study, we could find a mode with renormalization method and using this mode as a

initial condition for Schrödinger's equation we have observed its long term stability under

some perturbation.

We have compared our results with a finite difference matlab program in order to sure

about the results. As it predicted, we have seen that spectral methods are faster than other

methods.

As a last test, we have observed both added-potential case and without potential case

equations to analyze the effect of field intensity of the optical lattice. The results show that,

without potential case, the system is more stable than the potential added case.

We do not study on penrose and vortex initial conditions, which have more than one

solitons. We predict that these will give worse stability regions than one soliton give, from

similar studies. They will be gratifying research areas for our next studies. In addition, we

would study on eigenvalues, eigenmodes and eigenvectors of Schrödinger's equation in

order to examine stability boundaries and finding the best initial constant values.

Table of Contents

1. Introduction.. 6

2. Spectral Analysis and Fourier Transform.. 8

2.1. Spectral Analysis .. 8

2.2. Fourier Transform... 8

2.2.1. The Semidiscrete Fourier Transform... 9

2.2.2. The Discrete Fourier Transform (DFT) ... 10

2.2.3. The Fast Fourier Transform (FFT) .. 11

3. Renormalization and Exponential Time Differencing... 15

3.1. Renormalization.. 15

3.2. Exponential Time Differencing .. 16

3.2.1. Exponential Time Differencing Method.. 17

3.2.1. Exponential Time Differencing Method with Runge-Kutta Time Stepping 17

4. Finding Mode and Numerical Stability Analysis .. 19

4.1 MATLAB Background.. 19

4.2 Finding Mode... 20

Secant Method ... 21

4.3 Numerical Stability Analysis... 23

Fourth Order Runge-Kutta Method ... 23

5. Conclusion ... Hata! Yer işareti tanımlanmamış.

6. Bibliography .. 27

Table of Graphs

Graph 1: Time Domain versus Frequency Domain... 9

Graph 2: An Example of Aliasing on the Grid 0.25Z, sin(πx) is Identical to sin(9πx)........ 10

Graph 3: Secant Method .. 21

Graph 4: Initial Soliton .. 22

Graph 5: Best-Fit Mode ... 22

Graph 6: Analysis .. 22

Graph 7: Wavy Stability .. 24

Graph 8: Decreasing Period... 24

Graph 9: Small Solitons (Unstable)... 24

Graph 10: Top View - Unstability ... 24

Graph 11: Without Potential .. 24

1. Introduction

The premise of this project is to analyze Schrödinger's equation in three dimensional space.

We are interested in Yang’s paper [1] as a reference for our studies. Additionally, we have

benefited from [2-4] for renormalization methods and [5-7] for exponential time

differencing for stiff systems. We have studied [8-9] in order to learn programming

spectral methods in matlab. During this analysis, we are dealing with spectral analysis,

Fourier space and fast Fourier transform.

We have confirmed the results in [1]; that is, finding a mode with renormalization method

and using this mode as a initial condition for Schrödinger's equation to observe its long

term stability with some perturbation.

In the next section, we will practice spectral analysis. Additionally, Fourier space and

Fourier methods will be given in order to ensure the backward knowledge about this study.

In the 3rd section, we will introduce renormalization method and exponential time

differencing for stiff systems. In the 4th section, after studying necessary matlab

commands, we will discuss finding a mode for Schrödinger's equation and examine the

stability duration for this mode with a matlab program. In the last section, we will discuss

the results and state the future works.

2. Spectral Analysis and Fourier Transform

2.1. Spectral Analysis

We are using spectral analysis for solving a wide variety of practical problems encountered

by engineers and scientists in a very wide field of engineering and science. In most fields

the functions in spectral analysis are temporal or spatial waveforms or discrete data. The

purpose of spectral analysis is to represent a function by some of trigonometric functions

called spectral components; that is, the purpose is decompose the function into these

spectral components. The weighting function in the decomposition is a density of spectral

components (spectrum). The reason we represent a function with its spectrum is that it can

be an efficient, convenient and often revealing description of the given function.

For time-functions, the spectrum is obtained from an invertible transformation from a time-

domain to a frequency-domain description. We are using sine wave components in this

transformation because of our preoccupation with linear-time-invariant data sources and

transformations, which we often call filters [10].

2.2. Fourier Transform

To understand the definition of Fourier transform we will begin with essential idea:

representing a wave form in terms of frequency as opposed in time. Suppose our wave

form is described by vtπ2cos4 , which has a frequency v. Using Euler’s identity

φφφ sincos iei +=

we can write vtπ2cos4 in complex exponential form
vtivti eevt πππ 22 222cos4 −+=

where the complex essentials have amplitudes of 2 and frequencies of v and –v. Or, another

wave form
vtivti ieievt πππ 22 332sin9 −= −

which have complex amplitudes of 3i and -3i and frequencies of –v and v.

Graph 1: Time Domain versus Frequency Domain

These two examples show how the waves vtπ2cos4 and vtπ2sin9 can be expressed in

frequency terms and distinguished from each other using complex exponentials [11].

Now, we will introduce Fourier transform [8, 12-13]. The Fourier transform)(ˆ ku of a

function)(xu is defined as,

∫
∞

∞−

− ∈= Rkdxxueku ikx ,).(.)(ˆ

where)(ˆ ku is the amplitude density of)(xu at wavenumber k, and this process of

decomposing a function into its constituent waves is called Fourier analysis. Conversely,

)(xu could be reconstructed from)(ˆ ku by Fourier synthesis:

∫
∞

∞−

∈= Rxdkkuexu ikx ,).(ˆ.
2
1)(
π

2.2.1. The Semidiscrete Fourier Transform

We need to choose x from hZ rather than from R, because the spatial domain is discrete and

the wavenumbers will no longer range over R. Instead, the appropriate wavenumber

domain is bounded interval of 2π/h where a suitable choice is [-π/h, π/h].

From discrete and unbounded physical space, we transform the function into bounded and

continues Fourier space. Using the Fourier synthesis we turn back physical space. The

reason for these connections is aliasing; that is, we have infinitely many complex essentials

that match the functions on the grid hZ of k. That’s why we choose the interval [-π/h, π/h].

Graph 2: An Example of Aliasing on the Grid 0.25Z, sin(πx) is Identical to sin(9πx).

Now; for a function v defined on hZ with value vj at xj, the semidiscrete Fourier transform

is defined by,

]/,/[,.)(ˆ hhkvehkv
j

j
ikx ππ−∈= ∑

∞

−∞=

−

and the inverse semidiscrete Fourier transform is

∫
−

∈=
h

h

ikx
j Zjdkkvev

/

/

,).(ˆ.
2
1 π

ππ
.

If u is a differentiable function with Fourier transform û , then:

)(ˆ)('ˆ kuikku = .

2.2.2. The Discrete Fourier Transform (DFT)

In this part, we will examine spectral differentiation on a bounded, periodic grid. This

process was stated in the form of an NxN matrix operation. The semi-discrete Fourier

transform is replaced by discrete Fourier transform. In discrete case, the requirement of

periodicity may suggest that this method has limited relevance for practical problems;

however, periodic grids are surprisingly useful in practice. We will use a periodic grid of

the interval [0, 2π]. In addition the grid will be divided into N grid points which is always

even for our usage [12,13].

In discrete Fourier transformation case; the function u is transformed between discrete,

bounded physical space and discrete, bounded Fourier space [8].

The discrete Fourier transform formula could be given as:

2
...,,1

2
,ˆ

1

NNkvehv
N

j
j

ikx
k

j +−== ∑
=

−

On the other hand, the inverse discrete Fourier transform is given by:

Njvev
N

Nk
k

ikx
j

j ...,,1,ˆ
2
1 2/

12/

== ∑
+−=π

Discrete Fourier transform has linearity, periodicity and inversion properties. The last

property allows us to define the inverse discrete Fourier transform. There are additional

information and theorems about these properties in [11].

As a last step, the system should behave symmetrically. Therefore, by using 2/2/ ˆˆ NN vv =− ,

Njvev
N

Nk
k

ikx
j

j ...,,1,ˆ
2
1 2/

2/

== ∑
−=π

.

The source code of discrete Fourier transform could be found in [14].

2.2.3. The Fast Fourier Transform (FFT)

A direct calculation of an N-point DFT requires 2)1(−N multiplications and)1(−NN

additions. For large N, say 1000>N , this operation requires too much CPU time. In 1965

Cooley and Tukey discovered an new method that calculates the discrete Fourier transform

in)log(NNO floating point operations, which will reduce the calculation time by a factor

of 200 when 1024=N [8,11].

Today, there are many algorithms for calculating DFT faster. One of the most widely used

FFT algorithm is radix 2, where)(2 +Ζ∈= RN R will increase the performance.

Radix-2 FFT

In radix 2 algorithm, we start by halving the N-point DFT into two sums, each of which is

N/2-point DFT. By using Buneman’s bit reversal algorithm with using weights and

crosswise operations on each step the DFT is redacted in stages [11]. Additionally,

rotations in FFT will increase the performance.

Let us examine fast Fourier transform step by step. We should calculate the N-point DFT

∑
−

=

=
1

0

N

j

jk
jk WhH

where W stands for either weight Nie /2π or Nie /2π− . The base 2, for N = 2R is often called

radix 2. We will focus on the radix 2 method, because others could be determined from

radix 2.

Let us begin with halving the N-point DFT into two sums as

10
1

2
1

0

2
12

1
2
1

0

2
2)()(k

k
k

N

j

kjk
j

N

j

jk
jk HWHWWhWhH +=+= ∑∑

−

=
+

−

=

with even and odd sub parameters. Notice that N/2-point DFTs }{ 0
kH and }{ 1

kH use

weight W2 (not W). The periods of }{ 0
kH and }{ 1

kH are N/2, and the elements are

}...,,,{ 220 −Nhhh and }...,,,{ 131 −Nhhh respectively.

Since N = 2R we could divide N/2 evenly by 2, and using WN/2 = -1 we could write

⇒+= 10
k

k
kk HWHH 10

2/ k
k

kNk HWHH −=+

The calculations can be diagrammed as

 −=−→

×
+→

1
2
1...,,1,0101

100

NkHWHH

HWHH

k
k

kk

k
k

kk

where the diagram is called the butterfly.

The splitting of }{ kH into two half-size DFTs, could be repeated R=log2N stages where

we are performing N one-point DTFs. Another important step is requirement for reversal

of the last two bits (digits). Let’s examine N/4-point DFT.

112101

4
1

112101

012000

4
1

012000

)()(

)()(

k
k

kNkk
k

kk

k
k

kNkk
k

kk

HWHHHWHH

HWHHHWHH

−=+=

−=+=

+

+

Here, the sets could be given as:

}11{...}{

}01{...}{

}10{...}{

}00{...}{

11

10

01

00

DFTH

DFTH

DFTH

DFTH

k

k

k

k

=

=

=

=

Therefore, to begin the FFT calculation, one must first rearrange }{ kH so it is listed in bit

reverse order.

Bit Reversal

Buneman’s algorithm is the simplest method for performing the bit reversal permutation. It

is based on a simple pattern. If we have permuted the N numbers {0, 1, ..., N-1} by bit

reversing their binary expansions, then the permutation of the 2N numbers {0, 1, ..., 2N-1}

is obtained by doubling the numbers in the permutation of {0, 1, ..., N-1} to get the first N

numbers and then adding 1 to these doubled numbers to get the last N numbers.

...
73516240

3120
10

1

1

→

→
+

+

Let us prove the algorithm. Suppose m has the following binary expansion

m = (a1 a2 ... aR)base2

where each element is either 0 or 1. The number m is mapped to PN(m), its bit reversed

image, hence

PN(m) = (a1 a2 ... aR)base2

If we double PN(m), then

2PN(m) = (a1 a2 ... aR 0)base2

And we see that 2PN(m) is the bit reversed image of

m = (0 a1 a2 ... aR)base2

where m is considered as an element of {0, 1, ..., 2N-1} for the first N numbers.

Furthermore,

2PN(m) + 1 = (a1 a2 ... aR 1)base2

is the bit reversal of

m = (1 a1 a2 ... aR)base2

which accounts for the last N numbers in the list. While Buneman’s method is admirably

simple, it has the defect that it performs unnecessary swap operations. It can be improved

by more efficient algorithms that perform only those swaps that are absolutely necessary.

FAS Algorithm

This algorithm splits PN into two bit reversal permutations of square root size, that is:

m = (a1 a2 ... aQ b1 b2 ... bQ)base2

where m could be written as

m = KM + L.

Therefore,

PN(m) =MPN(L) + PN(K)

could be calculated faster than Buneman’s method [11].

As in DFT part, the source code of fast Fourier transform could be found in [14].

3. Renormalization and Exponential Time Differencing

We are dealing with the Schrödinger's equation

0
||sinsin1 222

0

0 =
++

−++ U
UyxI

EUUiU yyxxz .

Using the renormalization idea proposed in [15], we should find a non-linear equation

where the initial condition u(x, y) satisfies it.

3.1. Renormalization

Lattice vortices of equation

0
||1 2

0 =
++

−++ U
UV

EUUiU yyxxz ε

are sought in the form of
zieyxUzyxu µ−=),(),,(.

Therefore, the equation becomes

0
||1 2

0 =
++

−++
uV

uEuuu yyxx ε
µ

Now, lets pass to Fourier space:

0
||1

ˆˆ 2
02 =

++

−−
uV

uEFuku
ε

µ

Changing parameter

wu ˆˆ λ=

the equation will be

0
||||1

ˆˆ
22

02 =

++

−−
wV

wE
Fwkw

λε
µ .

Now, adding wr ˆ to both sides:

0
||||1

ˆˆˆˆ
22

02 =

++

−−+−
wV

wE
Fwrwrwkw

λε
µ

ŵ could be calculated as:

()

++

−+
+

= 22
0

2 ||||1
ˆ1ˆ

wV
wE

Fwr
rk

w
λε

µ .

Multiplying by complex conjugate *ŵ

()

++

−+
+

= 22
0

2 ||||1
*ˆ*ˆˆ1*ˆˆ

wV
wE

Fwwwr
rk

ww
λε

µ

And lastly integrating over k we will get:

()∫ ∫∫ ∫

++

−+
+

= dk
wV

wE
Fwwwr

rk
dkww 22

0
2 ||||1

*ˆ*ˆˆ1*ˆˆ
λε

µ

Defining objective function),(rG µ as

()∫ ∫∫ ∫

++

−+
+

−= dk
wV

wE
Fwwwr

rk
dkwwrG 22

0
2 ||||1

*ˆ*ˆˆ1*ˆˆ),(
λε

µµ

we could approximate to the exact ŵ with an initial U. Then we could calculate û , u and

U respectively.

r could be used as a constant value, 1±=ε ; µ and 0E system dependent variables and

lastly k will be used as:

222

)2(ˆˆ
)1(ˆˆ

yx

yx

kkk

Djkikk

Duiku

+=

+=

=&

3.2. Exponential Time Differencing

Cox and Matthews has developed a class of numerical methods for stiff systems, based on

the method of exponential time differencing [5]. We will describe these schemes with

second and higher order accuracy, and introduce new Runge Kutta versions of these

schemes, and lastly extending the method to show how may it be applied to systems whose

linear part is nondiagonal.

Although our primary interest lies in solving PDEs, it is clearer and more instructive first

to describe ETD methods in the context of simple model ODE for the evolution of a single

Fourier mode. The model ODE is

),,(tuFcuu +=& (1)

where c is a constant and F(u,t) represents nonlinear and forcing terms. For the high-order

Fourier modes, c is large and negative (for dissipative PDEs) or large and imaginary (for

dispersive PDEs).

3.2.1. Exponential Time Differencing Method

To derive the exponential time differencing (ETD) methods, we begin by multiplying the

equation with cte− , then integrating the equation over a single time step from ntt = from

httt nn +== +1 to give

.)),(()()(
0

1 ∫ +++= −
+

h

nn
cchch

nn dttuFeeetutu ττττ (2)

This formula is exact, and the essence of the ETD methods is in deriving approximations to

the integral in this expression. The simplest exponential time differencing method, ETD1,

could be achieved by choosing F constant. Therefore, the method become,

),,(,/)1(1 nnn
ch

n
ch

nn tuFFceFeuu =−+=+ (3)

which has a local truncation error 2/2Fh & . This version of exponential time differencing

method has been applied in computational electrodynamics, but is rarely mentioned outside

of this field in the numerical analysis literature [5].

If instead of assuming that F is constant over the interval 1+≤≤ nn ttt , and use higher

approximations we arrive at higher order numerical schemes. For choosing,

),(/)(2
1 hOhFFFF nnn +−+= −τ (4)

We arrive at the numerical scheme ETD2 given by,

() () ,/1/21)1(2
1

2
1 hchceFhchcehcFeuu ch

n
ch

n
ch

nn ++−+−−++= −+ (5)

which has a local truncation error of 12/5 3Fh && .

3.2.1. Exponential Time Differencing Method with Runge-Kutta Time Stepping

The ETD methods described above are of multistep type, requiring previous evaluations of

the nonlinear term F. Such methods are often inconvenient to use, since initially only one

value is available. This problem could be avoided by Runge-Kutta methods, which also

typically have the advantages of smaller error constants and larger stability regions than

multistep methods. We will obtain ETD methods of RK type of orders 2, 3, and 4.

3.2.1.1. Second-Order Runge-Kutta ETD Method

A second order ETD method of RK type, analogous to the “improved Euler” method, is as

follows. First, the step is taken to give

ceFeua ch
n

ch
nn /)1(−+= . (6)

Then the approximation

())(/),(),()(),(2hOhtuFhtaFtttuFF nnnnnnn +−+−+= (7)

is applied on the interval 1+≤≤ nn ttt , and is substituted into (2) to yield the scheme

ETD2RK given by

() 2
1 /)1(),(hchceFhtaFau ch

nnnnn −−−++=+ , (8)

The truncation error per step for this method is 12/3Fh &&− ; smaller by a factor of 5 than

that of EDT2.

3.2.1.2. Third-Order Runge-Kutta ETD Method

A third order EDT RK scheme can be constructed in a similar way, analogous to the

classical third-order RK method: ETD3RK is given by

()
[]

[]
[] 3222

22
1

2/2/

/})4(34),(

)2(2)2/,(4

)34(4),({

,/),()2/,()1(

,/),()1(

chhcechhchtbF

hcehchtaF

chhcehctuFeuu

ctuFhtaFeeub

ctuFeeua

ch
nn

ch
nn

ch
nn

ch
nn

nnnn
chch

nn

nn
chch

nn

−+−−−++

+−++++

+−+−−+=

−+−+=

−+=

+ (9)

The terms an and bn approximate the values of u at 2/htn + and htn + respectively.

3.2.1.3. Fourth-Order Runge-Kutta ETD Method

A straightforward extension of the standard fourth-order RK method yields a scheme

which is only third order. However, by varying the scheme and introducing further

parameters, a fourth-order scheme ETD4RK is obtained:

()
[]

()[]
[] 3222

22
1

2/2/

2/

2/2/

/})4(34),(

)2(2)2/,()2/,(2

)34(4),({

/),()2/,(2)1(

,/)2/,()1(

,/),()1(

chhcechhchtcF

hcehchtbFhtaF

chhcehctuFeuu

ctuFhtbFeeac

chtaFeeub

ctuFeeua

ch
nn

ch
nnnn

ch
nn

ch
nn

nnnn
chch

nn

nn
chch

nn

nn
chch

nn

−+−−−++

+−++++++

+−+−−+=

−+−+=

+−+=

−+=

+

 (10)

The computer algebra package Maple was used to confirm that this method is indeed

fourth order [5].

4. Finding Mode and Numerical Stability Analysis

In the first part, we will introduce some frequently used functions in MATLAB. After

defining these functions we will give some examples. In the second part we will explain

how to find modes for the Schrödinger's equation in three dimensional space. After finding

the mode, we will analyze numerical stability analysis for the calculated mode.

4.1 MATLAB Background

meshgrid: Used to generate two-dimensional X and Y matrices for three-

dimensional plots by using one-dimensional x and y arrays.

 Syntax:

[X,Y] = meshgrid(x,y)
[X,Y] = meshgrid(x)
[X,Y,Z] = meshgrid(x,y,z)

Example:

[X,Y] = meshgrid(1:3,10:14)

X =

 1 2 3
 1 2 3
 1 2 3
 1 2 3
 1 2 3

Y =

 10 10 10

 11 11 11
 12 12 12
 13 13 13
 14 14 14

conj: Used to calculate complex conjugate of x.

Syntax:

ZC = conj(Z)

Algorithm:

If Z is a complex array

conj(Z) = real(Z) - i*imag(Z)

fft2: Calculates two-dimensional Fourier transform

Syntax:

Y = fft2(X)
Y = fft2(X,m,n)

Algorithm:

 fft2(X) can be simply computed as

fft(fft(X).').'

This computes the one-dimensional FFT of each column X, then of each row of the

result. The time required to compute fft2(X) depends strongly on the number of

prime factors in [m,n] = size(X). It is fastest when m and n are powers of 2.

ifft2: Calculates two-dimensional inverse Fourier transform

Syntax:

Y = ifft2(X)
Y = ifft2(X,m,n)

The algorithm for ifft2(X) is the same as the algorithm for fft2(X), except for a sign

change and scale factors of [m,n] = size(X). The execution time is fastest when m

and n are powers of 2 and slowest when they are large primes [16].

4.2 Finding Mode

In renormalization part, we have defined the objective function),(rG µ as:

()∫ ∫∫ ∫

++

−+
+

−= dk
wV

wE
Fwwwr

rk
dkwwrG 22

0
2 ||||1

*ˆ*ˆˆ1*ˆˆ),(
λε

µµ (11)

So, we should find the roots of),(rG µ in order to make it zero and equate the two

integrals. We will use secant method for calculating the roots. So lets describe secant

method.

Secant Method

In numerical analysis, the secant method is a root-finding algorithm that uses a

succession of roots of secant lines to better approximate a root of a function f.

The secant method is defined by the recurrence relation

)(
)()(1

1
1 n

nn

nn
nn xf

xfxf
xxxx

−

−
+ −

−
+= .

As can be seen from the recurrence relation, the secant method requires two initial

values, x0 and x1, which should ideally be chosen to lie close to the root. The graph

3, shows the iterations of the method.

Graph 3: Secant Method

We have start programming with defining uniform grid points xn and yn (n: 1, 2, ..., 128)

with the interval ()ππ ,− . By using meshgrid function we achieve, two-dimensional x and

y matrices.

We have chosen the constant variables and perturbation function as:

yxyxVE
r

22
0 sinsin2),(5.7

2.310
==

== µ

by using the values from [1]. Then we have applied the secant method for finding the roots

of the equation (11) with the initial soliton of
22 yxeu −−= (shown in graph 4) until a

tolerance point.

Graph 4: Initial Soliton

Since we have chosen the function depends on w, as a result depends on λ ; we will find a

bestλ for this step. Here we will calculate new 1
bestw by bestλ . Then, we are continuing this

process until a tolerance value where n
best

n
best ww −+1 is used for comparing. At the end of this

process, we will get the best-fit mode for our equation (shown in the graph 5), and the

complex analysis and comparisons are shown in graph 6.

Graph 5: Best-Fit Mode

Graph 6: Analysis

4.3 Numerical Stability Analysis

We need to use fourth order Runge-Kutta method for advancing in time in calculating

numerical stability analysis of the function. So lets start with describing fourth order

Runge-Kutta method.

Fourth Order Runge-Kutta Method

In numerical analysis, the Runge–Kutta methods are an important family of implicit

and explicit iterative methods for the approximation of solutions of ordinary

differential equations. These techniques were developed around 1900 by the

German mathematicians C. Runge and M.W. Kutta.

One member of the family of Runge–Kutta methods is so commonly used that it is

often referred to as "RK4" or simply as "the Runge–Kutta method". Let an initial

value problem be specified as follows.

00)(),(' ytyytfy == .

 Then, the RK4 method for this problem is given by the following equations:

() httkkkkhyy nnnn +=++++= ++ 143211 ,22
6

where 1+ny is the RK4 approximation of)(1+nty and,

),(

)
2

,
2

(

)
2

,
2

(

),(

34

23

12

1

hkyhtfk

khyhtfk

khyhtfk

ytfk

nn

nn

nn

nn

++=

++=

++=

=

This method is reasonably simple and robust and is a good general candidate for

numerical solution of differential equations when combined with an intelligent

adaptive step-size routine.

In order to advance in time, we have used the initial mode found in previous part with RK4

in Fourier Space. In equation (11),),(yxV represents the field intensity of the optical

lattice [1]. Here the intensities of the probe beam and the lattice have been normalized with

respect to the dark irradiance of the crystal. The dark irradiance is the background

illumination used in experiments to fine-tune the non-linearity. Material damping of the

probe beam is very weak in typical experiments since the crystals are fairly short (up to 2

cm), hence neglected in equation (1). If the lattice is periodic along the x and y directions

(rectangular lattice), then),(yxV can be expressed as

yxIyxV 22
0 sinsin),(=

where 0I is its peak intensity and D its spacing. In order to analyze the importance of field

intensity in the equation, we have studied on numerical solution in two case: added-

potential and without potential ceses.

4.3.1 Added-Potential

In this case, we deal with equation (11). Studying on this part, we have noticed that; after a

wavy stablility period (graph 7), the soliton starts decreasing (shown in graph 8)

Graph 7: Wavy Stability

Graph 8: Decreasing Period

and some small solitons starts to occur near the original soliton (shown with an angle in

graph 9 and from top in graph 10).

Graph 9: Small Solitons (Unstable)

Graph 10: Top View - Unstability

4.3.1 Without Potential

In the second case, we have studied on

()∫ ∫∫ ∫

+

−+
+

−= dk
w

wE
Fwwwr

rk
dkwwrG 22

0
2 ||||1

*ˆ*ˆˆ1*ˆˆ),(
λε

µµ

where 0),(=yxV , the potential is chosen to be zero. We have noticed that the solitons

become more stable than the first case, and advancing with very small increases in a wavy

form (graph 11).

Graph 11: Without Potential

5. Conclusion

We have analyzed Schrödinger's equation in three dimensional spaces by using Yang’s

paper [1] as a reference for our studies. In this analysis, we have studied renormalization

methods, exponential time differencing for stiff systems, and programming spectral

methods in matlab. During this analysis, we are dealing with spectral analysis, Fourier

space and fast Fourier transform.

In the end, we have found a mode with renormalization method and use this mode as a

initial condition for Schrödinger's equation to observe its long term stability with some

perturbation. Therefore, we have confirmed the results in [1].

We have compared our results with a finite difference matlab program in order to sure

about the results. As it predicted, we have seen that spectral methods are faster than other

methods.

In our study we have observed both added-potential case and without potential case

equations to analyze the effect of field intensity of the optical lattice. The results show that,

without potential case, the system is more stable than the first case.

We do not study on penrose and vortex initial conditions, which have more than one

solitons. We predict that these will give worse stability regions than one soliton give, from

similar studies. They will be gratifying research areas for our next studies. In addition, we

would study on eigenvalues, eigenmodes and eigenvectors of Schrödinger's equation in

order to examine stability boundaries and finding the best initial constant values.

6. Bibliography

[1] J. Yang, "Stability of vortex solitons in a photorefractive optical lattice", New J. Phys.

6, 47 (2004).

[2] G. Fibich, Y. Sivan, M. I. Weinstein, "Bound states of nonlinear Schrödinger equations

with a periodic nonlinear microstructure" Science Direct. 217, 31-57 (2006).

[3] Z. H. Musslimani, J. Yang, "Self-trapping of light in a two-dimensional photonic

lattice," J. Opt. Soc. Am. B 21, 973-981 (2004).

[4] M. J. Ablowitz, Z. H. Musslimani, "Spectral renormalization method for computing

self-localized solutions to nonlinear systems," Opt. Lett. 30, 2140-2142 (2005).

[5] S. M. Cox, P. C. Matthews, "Exponential Time Differencing for Stiff Systems", Journal

of Computational Physics vol.176, iss.2, March 2002, pp.430-455.

[6] A. Kassam, L. N. Trefethen, "Fourth Order Time Stepping for Stiff PDEs", vol.26,

iss.4, April 2005, pp.1214-1233.

[7] A. Kassam, "Solving reaction-diffusion equations 10 times faster", Oxford University,

Numerical Analysis Group Research Report No. 16, 2003.

[8] L. N. Trefethen, Spectral Methods in Matlab, SIAM. 2000.

[9] L. N. Trefethen, "M-files – Spectral Methods in Matlab", 2000,

http://www.comlab.ox.ac.uk/people/nick.trefethen/spectral.html

[10] W. A. Gardner, Statistical Spectral Analysis, Prentice Hall. 1988.

[11] J. S. Walker, Fast Fourier Transforms, CRC Press. 1996

[12] H. J. Weaver, Applications of Discrete and Continuos Fourier Analysis, Krieger

Publishing Comp. 1992.

[13] R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw Hill Book

Comp. 1941.

[14] P. Bourke, "Discrete Fourier Transform – Fast Fourier Transform", 1993,

http://local.wasp.uwa.edu.au/~pbourke/other/dft/

[15] Petviashvili V I 1976 Plasma Phys. 2 469

[16] MATLAB, “Index of MATLAB Documentation”, April 2001, http://www-eleves-

isia.cma.fr/documentation/matlab/techdoc/ref/

