ANALYSIS of ALGORITHMS
PROJECT 1

Kruskal Algorithm vs Prim Algorithm
	Beycan Kahraman

040020337

03.04.2006

Ph. D. Ayşegül Gençata

I.
INTRODUCTION
In computer science, one of the most well-known problems is ‘Minimum Spanning Tree Problem’. Let’s explain what we have and what we want.
Think about the map of your country. There, you could see cities and roadways. That’s what we create and work on in computer. When someone asks us how much it will cost to travel all of the cities it will not be easy to calculate. However, if there is a way to show our computers how to solve that problem, they could easily calculates the minimum worth solution. Here the cities are the nodes of a graph and the ways are the edges of the same graph. What we will show to computer is give these known values

as a matrix and use the best algorithms to calculate the best solution.
With this project, we are about to start to analysis of algorithms lesson. We will compare the two well-known algorithms of minimum spanning tree problem. Eventually the comparing would be in Kruskal Algorithm and Prim Algorithm in a network problem.
II.
PROGRAMMING
I have used both Dev-C++ and Visual-C++ platforms to generate my program in C programming language. My system is AMD2500, 512MB RAM 400. These could be handly if you could not get the best results from the output. Since we’ll calculate the time in milliseconds and it had been defines as a unsigned short integer, you may have to change the LOOP value in respect of your system.

Since, I want to see the results outspokenly, I increased the running times of the functions to 20000 times. So, I could get about 300ms delay for 14 nodes and 20 edges.
III.
DATA STRUCTURES & VARIABLES
After reading the values from file we’ll need to store them in variables. So I have created an edge structure.
	/***

STRUCTURE EDGE
:

Every edge has two nodes (node1, node2)

Every edge has its measurement (measure)

We have a set method to initialize the edges

***/

typedef struct Edges

{

int node1, node2, measure;

void set(int n1, int n2, int m)

{

node1
= n1;

node2
= n2;

measure = m;

}

}

Edge;

IV.
FUNCTIONS

I need some functions to make my program easy to use and understand. I have created a function to read the graph matrixes from file, another function to print the solution graphs. And also, I have used Merge Sort Algorithm in Kruskal Algorithm. The are given below.
	/***

Aim Of the ReadFromFile Function :

 Reading The Matrixes From File

 Initializing The Size Of The Edges (IN, OUT)

 Setting the Initial Elements of the IN Edge Structure

 Initializes numberOfEdges (nOE) and numberOfNodes (nON)

***/

void ReadFromFile (Edge **in, Edge **out, int &nOE, int &nON, int t)

{

char c[] = "matrix1.txt\0";

int i, a, b, m;

c[6] = t + '1';

FILE *f = fopen (c, "r");

if (f == NULL){

printf("ERROR in OPENING FILE : %s\n", c);

system("PAUSE");

exit(-1);

}

fscanf (f, "%d\t%d\n", &nOE, &nON);

*in
= (Edge *) malloc(nOE*sizeof(Edge));

*out
= (Edge *) malloc(nON*sizeof(Edge));

for(i = 0; i < nOE; i++)

{

fscanf (f, "%d\t%d\t%d\n", &a, &b, &m);

(*in)[i].set (a-1, b-1, m);

}

fclose (f);

}

	/***

Aim Of the PrintEdge Function : Printing The Solution Edges

***/

void PrintEdge (Edge *in, int size)

{

int i, total = 0;

printf("--\n");

for (i = 0; i<size; i++)

{

total += in[i].measure; // Calculating the Total Measurement

printf ("%d\t%d\t%d\n", in[i].node1 + 1, in[i].node2 + 1, in[i].measure);

}

printf ("\nTotal Measure\t%d\n", total);

printf("--\n\n");

}

	/***

Aim Of the mergeSort Function :

 Sorting the Given Edges for Kruskal Algorithm use

***/

void merge (int start, int middle, int end, Edge *in)

{

int i = start,

j = middle + 1;

int k,

size = end - start + 1;

Edge *newEdge = (Edge *) malloc(size*sizeof(Edge));

for (k = 0; k < size; k ++)

if (in[i].measure < in[j].measure && i <= middle || j > end)

newEdge[k] = in[i++];

else

newEdge[k] = in[j++];

for (i = 0; i < size; i ++)

in[start + i] = newEdge[i];

free (newEdge);

}

/**/

void mergeSort (int start, int end, Edge *in)

{

if (start == end) return;

int middle = (start + end) / 2;

mergeSort (start, middle, in);

mergeSort (middle + 1, end, in);

merge (start, middle, end, in);

}

Essentially, we have no job with these functions. The main aim of the project is to create the Kruskal and the Prim Function. I have created the first algorithm like that.
	/*__

FUNCTION NAME
:
KRUSKAL

AIM OF THE FUNCTION
:
using Kruskal Algorithm

VALUES

:
IN (edges that have read from file)

OUT (solution edge)

nOE (number of Edges)

nON (number of Nodes)

WORKING

:
the function takes the given graph-matrix (in) and

after sorting the graph according to their measures

creates min trees and lastly join these graphs

SOLUTION

:
solution graph is OUT edge.

NOTE (*)

:
Both main function and Kruskal Function have a part

'COULD BE REPLACED'. If the given graph has sorted

once no need to sort the edges again. So the

algorithm runs very faster

__*/

void Kruskal (Edge *in, Edge *out, int nOE, int nON)

{

int i, j, counter = 0;
// looping and counting values

int add, tmpEdge = 0;
// tmp values

// used to understand if the node has used

// used[i] = D means i.th node has used

// and it is in the Dth graph

// used[i] = 0 means has not used before

int *used = (int *) calloc(nON, sizeof(int));

mergeSort (0, nOE - 1, in);

// COULD BE REPLACED (*)

// add numberOfNodes-1 edge to the solution graph

for (i = 0; i < nOE && counter < nON-1; i++)

{

// if one of the node has not used, add to the solution graph

if (used[in[i].node1] == 0 || used[in[i].node2] == 0)

{

add = tmpEdge;

if (used[in[i].node1] + used[in[i].node2] == 0)

{

add++;

++tmpEdge;

}

else

{

tmpEdge = add;

add = used[in[i].node1] + used[in[i].node2];

}

// add the min edge to the graph

used[in[i].node1] = add;

used[in[i].node2] = add;

out[counter++].set (in[i].node1, in[i].node2, in[i].measure);

}

// if the nodes are in different graphes, join the graphs

else if (used[in[i].node1] != used[in[i].node2])

{

add
= used[in[i].node1];

tmpEdge = used[in[i].node2];

out[counter++].set (in[i].node1, in[i].node2, in[i].measure);

// join the graphs

for(j = 0; j < nON; j++)

if (used[j] == tmpEdge)

used[j] = add;

}

}

free (used);
// freeing the memory
}

Here, I use the pseudo-code to create this function. However, it would not be as easy as I hope. Especially, finding if there is a repetition in the nodes and edges are very important and hard to solve.
On the other hand, after writing the victorious program I see that it is easy and very fast. I do not expected to its slowness is because of the sorting algorithm. If we take the sorting part of the algorithm outside, it’s running time will be slower to T(n). That’s amazing for such a problem.
The second part of the project is Prim Algorithm and its function. It is more easier than Kruskal Algorithm. When we define the variables to save used nodes it becomes very visible to understand.

	/*__

FUNCTION NAME

:
PRIM

AIM OF THE FUNCTION
:
using Prim Algorithm

VALUES

: IN (edges that have read from file)

OUT (solution edge)

nOE (number of Edges)

nON (number of Nodes)

WORKING

:
the function takes the given graph-matrix (in) and

after sorting the graph according to their measures

and neighbourhood it will create the solution graph

SOLUTION

: solution graph is OUT edge.

__*/

void Prim (Edge *in, Edge *out, int nOE, int nON)

{

int i, counter = 0;
// looping and counting values

int minEdge, min;

// for finding the min element

// used to understand if the node has used

// used[i]=1 means i.th node has used, used[i] = 0 has not

int *used = (int *) calloc(nON, sizeof(int));

used[0] = 1;

// add numberOfNodes-1 edge to the solution graph

while (counter < nON-1)

{

min = DEF_MIN;

// find the minimum measured neighbour of the nodes of the graph

for(i = 0; i < nOE; i++)

{

if (used[in[i].node1] + used[in[i].node2] == 1 && in[i].measure < min)

{

min = in[i].measure;

minEdge = i;

}

}

min = used[in[minEdge].node2] > 0 ? in[minEdge].node1 : in[minEdge].node2;

// add the min neighbour to the graph

used[min] = 1;

out[counter++].set (in[minEdge].node1, in[minEdge].node2, in[minEdge].measure);

}

free (used);
// freeing the memory

}

V.
FLOWCHART & EXPLANATIONS
We have used two algorithms that are Kruskal and Prim algorithms. You may see their flowchart below.
	[image: image1.png]
	[image: image2.png]

When using Kruskal Algorithm, I define used[] array which is used to show if this node has used.

If used[i] = 0 then it means that this node has not attached to any of the graphs. However, if used[i] = n then it means that this node has attached to the nth graph.

So that, I could control all of the graphs easily. When trying to add new node, I only control the edges’ nodes.

If both of them are used and they are the same, I easily do nothing. Because,

it ‘ll create a circle. Else if both of them are the same I’ll join the two graphs only. And lastly, if both of the nodes have not been used before, then I’ll create a new graph.
For these, I find that Kruskal Algorithm works with O(n) because there is only a loop which I add the edges one by one. Nonetheless, the sorting algorithm inside the Kruskal algorithm make our functions to work with O(n.logn) time.

On the other hand, Prim Algorithm works with O(n.logn) time.When we compare the two algorithm, we could easily notice that Prim algorithm works a bit faster. However, when we give a sorted list to both of the functions and get rid of the sorting part in Kruskal Algorithm, it will easily beat Prim Algortihm.

VI.
OUTPUT & COMPARISON

	5 6 1100

Total Measure 10400

--

 time for PRIM (network 2) : 110 ms

--

12 13 300

9 12 500

2 3 600

4 5 600

7 8 700

8 9 700

5 7 800

11 12 800

11 14 800

9 10 900

2 4 1000

5 6 1100

1 3 1600

Total Measure 10400

--

 time for KRUSKAL (network 2) : 141 ms

--

1 2 1100

As we expected, the result is not surprising. Kruskal works a bit slower than Prim function, but the difference is not so large that their running times may differ. Still, sorting algorithm in Kruskal function clearly make the function slower.
	Algorithms
	Network 1
	Network 2
	Network 3

	KRUSKAL
	188 ms
	156 ms
	266 ms

	PRIM
	141 ms
	109 ms
	188 ms

VII.
RESULT

We have compare the two algorithms, with Prim and Kruskal functions. We analyze that Prim’s working strategy is faster than Kruskal Algorithms’. However, if we have a sorted list the difference in two algorithms is very visible.
For these, I like the Kruskal Algorithm much; because without any sorting, it could be used more efficiently in some cases.
